35.
Woods SC, et al. Food intake and the regulation of body weight. Annu Rev Psychol. 2000;51:255–77.PubMed
36.
Davis JD, Campbell CS. Peripheral control of meal size in the rat. Effect of sham feeding on meal size and drinking rate. J Comp Physiol Psychol. 1973;83(3):379–87.PubMed
37.
Davis JD, Smith GP. Learning to sham feed: behavioral adjustments to loss of physiological postingestional stimuli. Am J Physiol. 1990;259(6 Pt 2): R1228–35.PubMed
38.
Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature. 1973;245:323–5.PubMed
39.
Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–95.PubMed
40.
Kissileff HR, et al. Cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34:154–60.PubMed
41.
Muurahainenn N, et al. Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man. Physiol Behav. 1988;44:644–9.
43.
Smith GP, Gibbs J. The development and proof of the cholecystokinin hypothesis of satiety. In: Dourish CT et al., editors. Multiple cholecystokinin receptors in the CNS. Oxford: Oxford University Press; 1992. p. 166–82.
44.
Beglinger C, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol. 2001;280:R1149–54.
45.
Hewson G, et al. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of endogenous cholecystokinin. Br J Pharmacol. 1988;93:79–84.PubMedCentralPubMed
46.
Moran TH, et al. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol. 1993;265:R620–4.PubMed
47.
Reidelberger RD, O’Rourke MF. Potent cholecystokinin antagonist L-364,718 stimulates food intake in rats. Am J Physiol. 1989;257:R1512–8.PubMed
48.
Kaplan JM, Moran TH. Gastrointestinal signaling in the control of food intake. In: Stricker M, Woods SC, editors. Handbook of behavioral neurobiology. Neurobiology of food and fluid intake, vol. 4(2). New York: Kluwer Academic, Plenum; 2004. p. 273–303.
49.
Smith GP, editor. Satiation: from gut to brain. New York: Oxford University Press; 1998.
50.
Stein LJ, Woods SC. Gastrin releasing peptide reduces meal size in rats. Peptides. 1982;3(5):833–5.PubMed
51.
Ladenheim EE, Wirth KE, Moran TH. Receptor subtype mediation of feeding suppression by bombesin-like peptides. Pharmacol Biochem Behav. 1996;54(4):705–11.PubMed
52.
Okada S, et al. Enterostatin (Val-Pro-Asp-Pro-Arg), the activation peptide of procolipase, selectively reduces fat intake. Physiol Behav. 1991;49:1185–9.PubMed
53.
Shargill NS, et al. Enterostatin suppresses food intake following injection into the third ventricle of rats. Brain Res. 1991;544:137–40.PubMed
54.
Lotter EC, et al. Somatostatin decreases food intake of rats and baboons. J Comp Physiol Psychol. 1981;95(2):278–87.PubMed
55.
Larsen PJ, et al. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes. 2001;50:2530–9.PubMed
56.
Naslund E, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23(3): 304–11.PubMed
57.
Fujimoto K, et al. Effect of intravenous administration of apolipoprotein A-IV on patterns of feeding, drinking and ambulatory activity in rats. Brain Res. 1993;608:233–7.PubMed
58.
Batterham RL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002; 418(6898):650–4.PubMed
59.
Chance WT, et al. Anorexia following the intrahypothalamic administration of amylin. Brain Res. 1991;539(2):352–4.PubMed
60.
Lutz TA, Del Prete E, Scharrer E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav. 1994;55(5):891–5.PubMed
61.
Geary N. Glucagon and the control of meal size. In: Smith GP, editor. Satiation: from gut to brain. New York: Oxford University Press; 1998. p. 164–97.
62.
Salter JM. Metabolic effects of glucagon in the Wistar rat. Am J Clin Nutr. 1960;8:535–9.
63.
Davison JS, Clarke GD. Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol. 1988;255(1 Pt 1): G55–61.PubMed
64.
Lorenz DN, Goldman SA. Vagal mediation of the cholecystokinin satiety effect in rats. Physiol Behav. 1982;29(4):599–604.PubMed
65.
Moran TH, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997;272(4 Pt 2):R1245–51.PubMed
66.
Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol. 1993;264:R116–22.PubMed
67.
Langhans W. Role of the liver in the metabolic control of eating: what we know – and what we do not know. Neurosci Biobehav Rev. 1996;20:145–53.PubMed
68.
Lutz TA, Del Prete E, Scharrer E. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides. 1995;16(3):457–62.PubMed
69.
Lutz TA, et al. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides. 1998;19(2):309–17.PubMed
70.
Edwards GL, Ladenheim EE, Ritter RC. Dorsomedial hindbrain participation in cholecystokinin-induced satiety. Am J Physiol. 1986;251:R971–7.PubMed
71.
Moran TH, Ladenheim EE, Schwartz GJ. Within-meal gut feedback signaling. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S39–41.PubMed
72.
Moran TH, Kinzig KP. Gastrointestinal satiety signals. II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286(2):G183–8.PubMed
73.
Rinaman L, et al. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol. 1995;360:246–56.PubMed
74.
West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol. 1984;246:R776–87.PubMed
75.
West DB, et al. Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite. 1987;8:221–7.PubMed
76.
Moran TH, et al. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol. 1998;274(3 Pt 2):R618–25.PubMed
77.
Birch LL, et al. The variability of young children’s energy intake. N Engl J Med. 1991;324:232–5.PubMed
78.
de Castro JM. Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. J Nutr. 1998;128:61–7.PubMed
79.
Gasnier A, Mayer A. Recherche sur la régulation de la nutrition. II. Mécanismes régulateurs de la nutrition chez le lapin domestique. Ann Physiol Physicochem Biol. 1939;15:157–85.
80.
Barrachina MD, et al. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA. 1997;94:10455–60.PubMedCentralPubMed
81.
Figlewicz DP, et al. Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon. Behav Neurosci. 1995;109:567–9.PubMed
82.
Matson CA, et al. Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides. 1997;18:1275–8.PubMed
83.
Matson CA, et al. Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol. 2000;278:R882–90.
84.
Riedy CA, et al. Central insulin enhances sensitivity to cholecystokinin. Physiol Behav. 1995;58:755–60.PubMed
85.
Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev. 1996;20:47–56.PubMed
86.
Schwartz GJ, et al. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ. Am J Physiol. 1997;272(6 Pt 2):R1726–33.PubMed
87.
Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol. 2002;23(1):2–40.PubMed
88.
Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337–50.PubMed
89.
Porte DJ, et al. Obesity, diabetes and the central nervous system. Diabetologia. 1998;41:863–81.PubMed
91.
Tartaglia LA, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.PubMed
92.
Bruning JC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5.PubMed
94.
Ollmann M, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278(5335):135–8.PubMed
95.
Rossi M, et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998;139:4428–31.PubMed
96.
Hagan MM, et al. Long-term orexigenic effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol. 2000;279:R47–52.
97.
Fan W, et al. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997;385:165–8.PubMed
98.
Hagan M, et al. Role of the CNS melanocortin system in the response to overfeeding. J Neurosci. 1999;19:2362–7.PubMed
99.
Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. 2003;24:1–10.PubMed
101.
Vaisse C, et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7.PubMed
102.
Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science. 1996;274(5290): 1185–8.PubMed
103.
Benoit SC, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedCentralPubMed
104.
Ainscow EK, et al. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002;544:429–45.PubMedCentralPubMed
105.
Even P, Nicolaidis S. Spontaneous and 2DG-induced metabolic changes and feeding: the ischymetric hypothesis. Brain Res Bull. 1985;15:429–35.PubMed
106.
Nicolaidis S, Even P. Mesure du métabolisme de fond en relation avec la prise alimentaire: Hypothese iscymétrique. C R Acad Sci Paris. 1984;298: 295–300.PubMed
107.
Clegg DJ, et al. Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes. 2002;51(11):3196–201.PubMed