Neuroregulation of Appetite




33.

Strubbe JH, Woods SC. The timing of meals. Psychol Rev. 2004;111:128–41.PubMed


34.

Woods SC, Strubbe JH. The psychobiology of meals. Psychon Bull Rev. 1994;1:141–55.PubMed


35.

Woods SC, et al. Food intake and the regulation of body weight. Annu Rev Psychol. 2000;51:255–77.PubMed


36.

Davis JD, Campbell CS. Peripheral control of meal size in the rat. Effect of sham feeding on meal size and drinking rate. J Comp Physiol Psychol. 1973;83(3):379–87.PubMed


37.

Davis JD, Smith GP. Learning to sham feed: behavioral adjustments to loss of physiological postingestional stimuli. Am J Physiol. 1990;259(6 Pt 2): R1228–35.PubMed


38.

Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature. 1973;245:323–5.PubMed


39.

Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–95.PubMed


40.

Kissileff HR, et al. Cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34:154–60.PubMed


41.

Muurahainenn N, et al. Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man. Physiol Behav. 1988;44:644–9.


42.

Moran TH, Schwartz GJ. Neurobiology of cholecystokinin. Crit Rev Neurobiol. 1994;9:1–28.PubMed


43.

Smith GP, Gibbs J. The development and proof of the cholecystokinin hypothesis of satiety. In: Dourish CT et al., editors. Multiple cholecystokinin receptors in the CNS. Oxford: Oxford University Press; 1992. p. 166–82.


44.

Beglinger C, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol. 2001;280:R1149–54.


45.

Hewson G, et al. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of endogenous cholecystokinin. Br J Pharmacol. 1988;93:79–84.PubMedCentralPubMed


46.

Moran TH, et al. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol. 1993;265:R620–4.PubMed


47.

Reidelberger RD, O’Rourke MF. Potent cholecystokinin antagonist L-364,718 stimulates food intake in rats. Am J Physiol. 1989;257:R1512–8.PubMed


48.

Kaplan JM, Moran TH. Gastrointestinal signaling in the control of food intake. In: Stricker M, Woods SC, editors. Handbook of behavioral neurobiology. Neurobiology of food and fluid intake, vol. 4(2). New York: Kluwer Academic, Plenum; 2004. p. 273–303.


49.

Smith GP, editor. Satiation: from gut to brain. New York: Oxford University Press; 1998.


50.

Stein LJ, Woods SC. Gastrin releasing peptide reduces meal size in rats. Peptides. 1982;3(5):833–5.PubMed


51.

Ladenheim EE, Wirth KE, Moran TH. Receptor subtype mediation of feeding suppression by bombesin-like peptides. Pharmacol Biochem Behav. 1996;54(4):705–11.PubMed


52.

Okada S, et al. Enterostatin (Val-Pro-Asp-Pro-Arg), the activation peptide of procolipase, selectively reduces fat intake. Physiol Behav. 1991;49:1185–9.PubMed


53.

Shargill NS, et al. Enterostatin suppresses food intake following injection into the third ventricle of rats. Brain Res. 1991;544:137–40.PubMed


54.

Lotter EC, et al. Somatostatin decreases food intake of rats and baboons. J Comp Physiol Psychol. 1981;95(2):278–87.PubMed


55.

Larsen PJ, et al. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes. 2001;50:2530–9.PubMed


56.

Naslund E, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23(3): 304–11.PubMed


57.

Fujimoto K, et al. Effect of intravenous administration of apolipoprotein A-IV on patterns of feeding, drinking and ambulatory activity in rats. Brain Res. 1993;608:233–7.PubMed


58.

Batterham RL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002; 418(6898):650–4.PubMed


59.

Chance WT, et al. Anorexia following the intrahypothalamic administration of amylin. Brain Res. 1991;539(2):352–4.PubMed


60.

Lutz TA, Del Prete E, Scharrer E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav. 1994;55(5):891–5.PubMed


61.

Geary N. Glucagon and the control of meal size. In: Smith GP, editor. Satiation: from gut to brain. New York: Oxford University Press; 1998. p. 164–97.


62.

Salter JM. Metabolic effects of glucagon in the Wistar rat. Am J Clin Nutr. 1960;8:535–9.


63.

Davison JS, Clarke GD. Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol. 1988;255(1 Pt 1): G55–61.PubMed


64.

Lorenz DN, Goldman SA. Vagal mediation of the cholecystokinin satiety effect in rats. Physiol Behav. 1982;29(4):599–604.PubMed


65.

Moran TH, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997;272(4 Pt 2):R1245–51.PubMed


66.

Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol. 1993;264:R116–22.PubMed


67.

Langhans W. Role of the liver in the metabolic control of eating: what we know – and what we do not know. Neurosci Biobehav Rev. 1996;20:145–53.PubMed


68.

Lutz TA, Del Prete E, Scharrer E. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides. 1995;16(3):457–62.PubMed


69.

Lutz TA, et al. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides. 1998;19(2):309–17.PubMed


70.

Edwards GL, Ladenheim EE, Ritter RC. Dorsomedial hindbrain participation in cholecystokinin-induced satiety. Am J Physiol. 1986;251:R971–7.PubMed


71.

Moran TH, Ladenheim EE, Schwartz GJ. Within-meal gut feedback signaling. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S39–41.PubMed


72.

Moran TH, Kinzig KP. Gastrointestinal satiety signals. II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286(2):G183–8.PubMed


73.

Rinaman L, et al. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol. 1995;360:246–56.PubMed


74.

West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol. 1984;246:R776–87.PubMed


75.

West DB, et al. Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite. 1987;8:221–7.PubMed


76.

Moran TH, et al. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol. 1998;274(3 Pt 2):R618–25.PubMed


77.

Birch LL, et al. The variability of young children’s energy intake. N Engl J Med. 1991;324:232–5.PubMed


78.

de Castro JM. Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. J Nutr. 1998;128:61–7.PubMed


79.

Gasnier A, Mayer A. Recherche sur la régulation de la nutrition. II. Mécanismes régulateurs de la nutrition chez le lapin domestique. Ann Physiol Physicochem Biol. 1939;15:157–85.


80.

Barrachina MD, et al. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA. 1997;94:10455–60.PubMedCentralPubMed


81.

Figlewicz DP, et al. Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon. Behav Neurosci. 1995;109:567–9.PubMed


82.

Matson CA, et al. Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides. 1997;18:1275–8.PubMed


83.

Matson CA, et al. Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol. 2000;278:R882–90.


84.

Riedy CA, et al. Central insulin enhances sensitivity to cholecystokinin. Physiol Behav. 1995;58:755–60.PubMed


85.

Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev. 1996;20:47–56.PubMed


86.

Schwartz GJ, et al. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ. Am J Physiol. 1997;272(6 Pt 2):R1726–33.PubMed


87.

Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol. 2002;23(1):2–40.PubMed


88.

Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337–50.PubMed


89.

Porte DJ, et al. Obesity, diabetes and the central nervous system. Diabetologia. 1998;41:863–81.PubMed


90.

Woods SC, et al. Insulin and the blood-brain barrier. Curr Pharm Des. 2003;9:795–800.PubMed


91.

Tartaglia LA, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.PubMed


92.

Bruning JC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5.PubMed


93.

Seeley R, et al. Melanocortin receptors in leptin effects. Nature. 1997;390:349.PubMed


94.

Ollmann M, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278(5335):135–8.PubMed


95.

Rossi M, et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998;139:4428–31.PubMed


96.

Hagan MM, et al. Long-term orexigenic effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol. 2000;279:R47–52.


97.

Fan W, et al. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997;385:165–8.PubMed


98.

Hagan M, et al. Role of the CNS melanocortin system in the response to overfeeding. J Neurosci. 1999;19:2362–7.PubMed


99.

Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. 2003;24:1–10.PubMed


100.

Tartaglia LA. The leptin receptor. J Biol Chem. 1997;272:6093–6.PubMed


101.

Vaisse C, et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7.PubMed


102.

Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science. 1996;274(5290): 1185–8.PubMed


103.

Benoit SC, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedCentralPubMed


104.

Ainscow EK, et al. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002;544:429–45.PubMedCentralPubMed


105.

Even P, Nicolaidis S. Spontaneous and 2DG-induced metabolic changes and feeding: the ischymetric hypothesis. Brain Res Bull. 1985;15:429–35.PubMed


106.

Nicolaidis S, Even P. Mesure du métabolisme de fond en relation avec la prise alimentaire: Hypothese iscymétrique. C R Acad Sci Paris. 1984;298: 295–300.PubMed


107.

Clegg DJ, et al. Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes. 2002;51(11):3196–201.PubMed

Mar 27, 2016 | Posted by in General Surgery | Comments Off on Neuroregulation of Appetite

Full access? Get Clinical Tree

Get Clinical Tree app for offline access